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GeneCIS: A Benchmark For General 
Conditional Image Similarity

 THE PROBLEM  THE GeneCIS BENCHMARK
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Which of the images (B, C, D) are ’most similar’ to (A)? 
Given different conditions, any of images are a valid answer 
Most image representations implicitly assume a single notion of similarity 
Goal: We aim to train and evaluate models which can adapt 

to different similarity conditions

OUR METHOD: MODEL

SIMILARITY CONDITIONS

• Existing conditional similarity benchmarks consider a finite set of conditions 
• We consider an open-set of conditions with a zero-shot benchmark 
• We consider conditions with respect to two axes
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OUR METHOD: MINING TRAINING DATA

2. Extract relationships

painting of a brown horse on a canvas, with 
a black tail and upright posture 


Relationships: (‘Subject’  'Predicate’  'Object’) 
1: painting (subj.) → of (pred.) → horse (obj.)


2: horse (subj.) → with (pred.) → posture (obj.)

…


K: horse (subj.) → on (pred.) → canvas (obj.) 

→ →

Filtered Relationships: 
1: painting (subj.) → of (pred.) → horse (obj.)


2: horse (subj.) → on (pred.) → canvas (obj.) 

Entities: 
painting, horse, 

canvas, tail, posture 
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3. Construct triplets: (IR, IT, c)

Shared subject 
Different objects


Condition: 

Target Pred. 

+


Target Obj.

young swimmer in a 

swimming pool


painting of a brown horse on a canvas, with 
a black tail and upright posture 


a golden crown on the fencehorses grazing on a meadow


1. Image-Caption Data

… …

• GeneCIS contains four conditional retrieval tasks for zero-shot evaluation 
• Model inputs: (i) Reference Image; (ii) Condition Text; (iii) Gallery of target images 
• Models must select the only conditionally similar image in the gallery 
• Gallery contains ‘distractor’ images which prevent shortcut solutions

• Large-scale training data for conditional similarity is difficult to obtain 
• We mine training data from large-scale image-caption datasets 
• We mine triplets of (reference image, target image, text condition) 
• We use text-scene-graph parsers to understand image contents
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• Embed text conditions and images with CLIP encoders 
• Combiner module [1] conditions the reference image on the text condition 
• Train contrastively end-to-end

RESULTS ON GeneCIS

WEAK CORRELATION WITH IMAGENET ACCURACY

Including the same model trained with 
manually annotated data from [2]

Our zero-shot model also outperforms 
supervised baselines on related datasets
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GeneCIS performance is weakly correlated 
with the accuracy of the CLIP backbone 
• This is different to many popular vision tasks 
• Simply scaling existing methods is not fruitful

Condition

With the same bridge

With a black car

With the same car

With the same bridge

With the same car

With a black car

B

C

D

A

Our method outperforms all baselines 


